Ph	vsics	05-02	Weight	and	Gravity
	JULUU	00 02	" cigiic	unu	aravicy

Name: _

Newton's Law of Universal Gravitation

_ in the universe exerts a _____ on every other particle

where:

$$G = 6.673 \times 10^{-11} \frac{Nm^2}{kg^2}$$

$$F_G = \frac{GmM}{r^2}$$

m and *M*=____of the objects r = _____ between the ____ of the objects

What is the gravitational attraction between a 75-kg boy (165 lbs) and the 50-kg girl (110 lbs) seated 1 m away in the next desk?

Finding Acceleration Due to Gravity

Since weight is the _____ of ___

$$W = mg = \frac{GmM}{r^2}$$
$$g = \frac{GM}{r^2}$$

$$g = \frac{GM}{r^2}$$

Find the acceleration due to gravity at the altitude of the ISS, 417.5 km above the earth.

Practice Work

- How are weight and mass related? How are they different?
- 2. If the distance between two objects triples, what happens to the magnitude of the gravitation force between them?
- When calculating the acceleration due to gravity, which mass do you use?

Physics	05-02	Weight.	and Grav	itv
LILYBICS	000=	TT CLGITT	una aray	10,

Name:

- 4. A bowling ball (mass = 7.2 kg, radius = 0.11 m) and a billiard ball (mass = 0.38 kg, radius = 0.028 m) may each be treated as uniform spheres. What is the magnitude of the maximum gravitational force that each can exert on the other? (Cutnell 4.18) $9.6 \times 10^{-9} \text{ N}$
- 5. On earth, two parts of a space probe weight 11000 N and 3400 N. These parts are separated by a center-to-center distance of 12 m and may be treated as uniform spherical objects. Find the magnitude of the gravitational force that each part exerts on the other out in space, far from any other objects. (Cutnell 4.19) 1.8×10^{-7} N
- 6. What is the gravitational force between the earth, $m = 5.98 \times 10^{24} \ kg$, and the sun, $m = 1.99 \times 10^{30} \ kg$, if they are separated by $1.48 \times 10^8 \ km$? (RW) $3.62 \times 10^{22} \ N$
- 7. If Venus orbits the sun at 1.08×10^8 km and experiences a gravitational force of 5.54×10^{22} N, what is its mass? (RW) 4.87×10^{24} kg
- 8. What is the acceleration due to gravity on the surface of the Moon? (OpenStax 6.35a) 1.62 m/s^2
- 9. What is the acceleration due to gravity on the surface of Mars? The mass of Mars is 6.418×10^{23} kg and its radius is 3.38×10^6 m. (OpenStax 6.35b) **3.75 m/s**²
- 10. (a) Calculate the acceleration due to gravity on the surface of the Sun. (b) By what factor would your weight increase if you could stand on the Sun? (Never mind that you cannot.) (OpenStax 6.36) **274 m/s²**, **28 times**
- 11. What is the acceleration due to gravity as an altitude of 2.0×10^6 m above the earth's surface? (RW) 5.68 m/s²